
 Volume 6 Issue 1 (2018) 3-5 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 3
IJARI

In Container Integration Testing Frame Work

H S Vijaya Kumar*, Vikas S M

Department of Computer Applications, Siddaganga Institute of Technology, Tumakurur, Karnataka, India
 Abstract

In Container Integration testing framework is a combination of four open source technologies. Arquillian,

Test NG, JaCoCo, and Maven. The aim of this work is to deals with automating the code using JaCoCo.

JaCoCo is a Java framework calculates code coverage. It find’s the amount of code coverage in each lines

of module that has been executed or missed and finally it will be deploy to wild fly server in the user

matrix project source container.The main idea behind developing in this automation testing framework is

able to test server side components developed using Java. The tests will be such that they will run in the

container/application server (e.g. Wild Fly) where the server side component (e.g. test1) is deployed and

because of that the tests will be able to use all the real resources (e.g. EJB etc.) provided by the container

instead of mocking them.[1]Web Service Description Language (WSDL) specification, we first

automatically generate necessary Java code to implement a client. We then leverage automated unit test

generation tools for Java to generate unit tests, and execute the generated unit tests, which in turn invoke

the service under test. The next important objective is to calculate amount of code covered by the test cases.

1. Introduction
In Container Integration testing framework is an integrated system

that sets the rules of automation of a specific product which integrates

several components such as function libraries, test data sources,

object details and various reusable modules. These components help

building a suitable automation framework which enable testing the

business process as per the requirements. In addition, test automation

is used to control the execution of tests and the comparison of actual

outcomes with predicted outcomes[2]. Manual Testing is a type of

Software Testing where Testers manually execute test cases without

using any automation tools[3]. Automatic Testing technique where

the tester writes scripts by own and uses suitable software to test the

software. It is basically an automation process of a manual

process.The procedure being utilized to execute automation is known

as a test computerization system, a few structures have been

actualized throughout the years by business sellers and testing

association. Mechanization actualized when it has been resolved that

the manual testing is not meeting desires, keep away from human

mistakes and when it is impractical to get more manual analyzers.

Arquillian is a testing framework for Java that leverages JUnit and

TestNG to execute test cases against a Java container.TestNG is a

framework using which the test cases are written and these test cases

are run by the Arquillian. TestNG is designed to cover all categories

of tests: unit, functional, end-to-end, integration[6]

JaCoCoframework calculates code coverage. The coverage report

calculated by

JaCoCo not only gives ball park view of how much has or has not

been covered by the test cases but also give a code level view,

showing the covered code in green color, partially covered code in

yellow color, and missed code in red color [7]. Maven is used to

handle the dependencies required for running Arquillian, TestNG and

JaCoCo. It has been used a tool to bind the rest of the technologies to

work together.

2. Literature survey
Existing system has Manual Testing that uses unit Testing using

mocks[4]. An object under test may have dependencies on other

objects. To isolate the behavior of the object you want to test you

replace the other objects by mocks that simulate the behavior of the

real objects. This is useful if the real objects are impractical to

incorporate into the unit test. This unit test is not isolated, it always

depends on external resources like database. This unit test can’t

ensures the test condition is always the same, the data in the database

may vary in time It’s too much work to test a simple method, cause

developers skipping the test.[5]Proposed System is In container

*Corresponding Author,

E-mail-address: sitvijay@gmail.com

All rights reserved: http://www.ijari.org

integration testingArquillian helps simplify integration testing of

application. It is designed by keeping to eliminate the drawbacks of

the present system in order to provide the solution for the existing

problems. The main focus is on.Reducing manual test work.Finding

code coverage using JaCoCoIn-Container testing of

JavaEEcomponents.In container Integration testing is aimed at

automating the server side components and testing of all the java

based products along with generation of code coverage report.

Functional and non-functional web service testing [10] is done with

the help of WSDL parsing and regression testing is performed by

identifying the changes made thereafter. Web service regression

testing needs can be categorized in three different ways, namely,

changes in WSDL, changes in code, and selective re-testing of web

serviceoperations.Representational State Transfer (RESTful) Web

Services: The functionality for RESTful web services is well suited

for basic, ad hoc integration scenarios. RESTful web services, often

better integrated with HTTP than SOAP based services are, do not

require XML messages or WSDL service API definitions. It is noted

that in all web service applications, the designed testing automation

framework does not work efficiently as it requires human

intervention and test data dependency [11].

3 Methodology
3.1 Design Description

This Automation testing framework is developed using four open

source technologies viz. Arquillian, TestNG, JaCoCo, and Maven.

Each of the four technologies plays important roles in achieving the

overall objective. TestNG is the test framework using which the

actual test cases are written. Arquillian helps in running the test cases

in the target container e.g. WildFly, so that the tests can also use the

same resources as the real application is using e.g. EJB, CDI, etc.

JaCoCo is used in getting the code coverage report. The maven is the

glue that binds all the technologies together. Maven also works as

dependency management and build tool.

 3.2 Structured Design
This is an industry standard. The technique starts by identifying

inputs and desired outputs to create a graphical representation.

Structured design has been adopted. The test data is fed through the

test cases written in TestNG and each of the components has well

defined responsibilities. Each of the components operate in cohesive

manner to accomplish the overall task i.e. to deploy and run test cases

in the container and get coverage report at same time. It shows

executed methods and unexecuted methods

4 Design and Implementation

4.1 Design of the system
In container integration testingArquillian helps simplify integration

testing of application. Unit tests live in their own world e.g. when you

have to test your EJBs, you have to mock the EJB container and a

Article Info

Article history:

Received 25 January 2018

Received in revised form

20 February 2018

Accepted 28 February 2018

Available online 15 March 2018

Keywords

Integration Testing, Automation

Testing, Java Framework, Unit

Tests

 Volume 6 Issue 1 (2018) 3-5 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 4
 IJARI

whole lot of other things. With Arquillian you no longer have to do

all those mocking or any other plumbing job to run your tests.

Arquillian run your tests inside the choice of your container. It

 Fig: 1: Color coding of JaCOCO report

Fig. 2 : Architecture of In container integration frame

deploys your test code with your application code so that the test code

can leverage all the services of the container and your application gets

to live in the real world of its container.Include a diagram as follows

and explain how it has been modeled to accomplish the user

requirements. e.g. JaCoCo for code coverage, Arquillian for

deploying and running test in the application server.build

management maven has been used to configure test and application

classes that need to be built, the container adapter (e.g. wildfly-

arquillian-container-remote) to use when Arquillian will try to deploy

the test code in an application container (e.g. WildFly), and JaCoCo

to include/exclude application source files in the code coverage

report.

Fig 4 DFD tells above the action performed by client Here, Fetching

data from Data Base, and [9]creating a JSON file. Abstract Data

Factory, were creating an Object for which is related to a method.

Writing a test case using of data factory object and using values of

data base to asserting. Test Case runs in a server. Final Step is to

Check JaCoCo.

JaCoCo uses byte code instrumentation to modify the compiled

classes in the archive (e.g. test1.ear) By modifying the compiled

classes JaCoCo puts some markers at appropriate places in the byte

code and when a line of byte code is executed that marker changes to

indicate the same. This execution data is kept in a special file called

jacoco.exec. After the execution of all the test cases, JaCoCo maps

the execution data to the corresponding source files to generate the

coverage report.

Fig 3: Adding Maven pom.xml dependency

Fig. 4: Data Flow Diagram

Fig 5: JaCoCo Code Coverage Report

 Volume 6 Issue 1 (2018) 3-5 ISSN 2347 - 3258
International Journal of Advance Research and Innovation

 5
 IJARI

5. Results

5.1 Running test cases with code and cover report
It going to be a slow process so we are going to use it less often. This

approach requires the application server running with no deployment

in it. Arquillian will connect to the running application sever deploy

the whole application along with the test classes and test cases will

be run against the application. Covered test methods are represented

by green color and uncovered by red color

6. Conclusions
Aimed at automating server side testing of all the java based products

along with generation of code coverage report. The technology

industry is moving towards automating everything it can. The major

chunk of that automation includes automating the manual testing so

that the products can be tested thoroughly, comprehensively, and as

fast as possible. Server side testing can be automated. This will save

time of QA so that they can work hard to break the system by doing

some rigorous testing and hence improving the quality of software.

The coverage report generated by JaCoCo the developer can easily

find the junk piece of code and remove it, keeping the code base

clean. If some part of the application code is not getting covered then

one can write test cases to cover that part of code making the additions

of code more safe and reliable.

7. References
[1]. X Bai, W Dong, WT Tsai, Y Chen. WSDL-based automatic test

case generation for web services testing. In Proc. IEEE International

Workshop on Service-Oriented System Engineering, 2005, 215–220.

[2].http://www.guru99.com/manual-testing.html

[3].http://www.softwaretestingclass.com/what-is-automation-

testing/

[4].https://www.mkyong.com/unittest/unit-test-what-is-mocking-

and-why/

[5]. Book: Arquillian Testing Guide by John D. Ament

[6].TestNG official documentation:

http://testng.org/doc/documentation-main.html

[7]Maven official documentation:

 https://maven.apache.org/guides/

[8] http://www.jacoco.org/jacoco/trunk/coverage/

[9] ttps://www.tutorialspoint.com/json/json_objects.htm

[10] http://en.wikipedia.org/wiki/Web_service

[11] MI Ladan. Web Services Testing Approaches: A Survey and a

Classification, 2010, 70–79

